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Abstract
We construct a class of 3 ⊗ 3 entangled edge states with positive partial
transposes using indecomposable positive linear maps. This class contains
several new types of entangled edge states with respect to the range dimensions
of themselves and their partial transposes.
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Mathematics Subject Classification: 81P15, 15A30, 46L05

1. Introduction

The notion of entanglement in quantum physics has been studied extensively during the
last decade in connection with the quantum information theory and quantum communication
theory. A density matrix A in (Mn ⊗ Mm)+ is said to be entangled if it does not belong to
M+

n ⊗ M+
m, where M+

n denotes the cone of all positive semi-definite n × n matrices over the
complex fields. A density matrix is said to be separable if it belongs to M+

n ⊗M+
m. Recall that

a density matrix defines a state on the matrix algebra by the Schur or Hadamard product.
The basic question is, of course, how to distinguish entangled ones among density

matrices, or equivalently among states on matrices. For a block matrix A ∈ Mn ⊗ Mm,
the partial transpose or block transpose Aτ of A is defined by m∑

i,j=1

aij ⊗ eij

τ

=
m∑

i,j=1

aji ⊗ eij .

In the early 1980s, it was observed by Choi [7] that the partial transpose of every separable
state is positive semi-definite. This necessary condition for separability has also been found
independently by Peres [27], and is now called the PPT criterion for separability. Choi [7]
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also gave an example of 3⊗3 entangled state whose partial transpose is positive semi-definite.
This kind of entangled state is called PPTES.

A positive linear map between matrix algebras is said to be decomposable if it is the sum
of a completely positive linear map and a completely copositive linear map. Choi [6] was
the first who gave an example of an indecomposable positive linear map. Woronowicz [34]
showed that every positive linear map from M2 into Mn is decomposable if and only if n � 3.
He showed that there is an indecomposable positive linear map from M2 into M4 by exhibiting
an example of 2 ⊗ 4 PPTES. Strørmer [30] also gave a necessary and sufficient condition
for decomposability in terms of partial transpose, and gave an example of 3 ⊗ 3 PPTES.
During the 1990s, several examples of PPTES have been found; see [1, 2, 8, 14–16, 29].
Among examples of PPTES, the so-called edge PPTES play special roles as was studied in
[25].

The cone of all positive semi-definite block matrices with positive partial transposes will
be denoted by T in this paper. The facial structures may be explained in terms of duality
between the space of linear maps and the space of block matrices, as was studied in [9] which
was motivated by the works of Woronowicz [34], Strørmer [30] and Itoh [18]. The cone
generated by separable states will be denoted by V1. Then the above-mentioned examples
will lie in T\V1. A PPTES A in T\V1 is an edge PPTES if and only if the proper face of T

containing A as an interior point does not contain a separable state.
Edge states may be classified by their range dimensions as was studied in [29]. An edge

PPTES A is said to be an (s, t) edge state if the range dimension of A is s, and the range
dimension of Aτ is t. Some necessary conditions for possible combination of (s, t) have been
discussed in [17, 29]. In the 3 ⊗ 3 cases, it is quite curious that all known examples of edge
PPTES are (4, 4) or (7, 6) edge states. Here, we assume that s � t by the symmetry. The
purpose of this paper is to construct other kinds of 3 ⊗ 3 edge states. More precisely, we
construct (7, 5), (6, 5) and (8, 5) edge states as well as (7, 6) and (4, 4) edge states. It seems
to be still open if there exists a (6, 6) or (5, 5) edge state. This paper was motivated by the
paper [29], where it was conjectured that every 3 ⊗ 3 entangled state has Schmidt number 2.
This is equivalent to asking if every 2-positive linear map between M3 is decomposable, by
the duality mentioned above; see [4], corollary 4.3 and [10] in this direction.

The basic tool is the duality mentioned above. In section 2, we briefly recall the basic
notions of the duality, together with the results in [13, 14] which show that every edge state
may be constructed from an indecomposable positive linear map. Our examples of edge states
will be constructed in section 3 from the indecomposable maps considered in [4].

Throughout this paper, we will not use bra–ket notation. Every vector will be considered
as a column vector. If x ∈ Cm and y ∈ Cn then x will be considered as an m × 1 matrix, and
y∗ will be considered as a 1 × n matrix, and so xy∗ is an m × n rank 1 matrix whose range
is generated by x and whose kernel is orthogonal to y. In the case of a vector x, the notation
x will be used for the vector whose entries are conjugate to the corresponding entries. The
notation 〈·, ·〉 will be used for bi-linear pairing. On the other hand, (·|·) will be used for the
inner product, which is sesquilinear, that is, linear in the first variable and conjugate-linear
in the second variable. For natural numbers m and n, we denote by m ∨ n and m ∧ n the
maximum and minimum of m and n, respectively.

2. Decomposable maps and PPT entanglement

For a given finite set V = {V1, V2, . . . , Vν} ⊂ Mm×n of m × n matrices, we define linear maps
φV and φV from Mm into Mn by the following,
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φV : X 	→
ν∑

i=1

V ∗
i XVi, X ∈ Mm,

φV : X 	→
ν∑

i=1

V ∗
i XtVi, X ∈ Mm,

where Xt denotes the transpose of X. We denote φV = φ{V } and φV = φ{V }. It is well known
[5, 24] that every completely positive (respectively completely copositive) linear map between
matrix algebras is of the form �V (respectively �V ). We denote by Pm∧n (respectively Pm∧n)
the convex cone of all completely positive (respectively completely copositive) linear maps.
For a subspace E of Mm×n, we define

�E = {φV ∈ Pm∧n : spanV ⊂ E}, �E = {φV ∈ Pm∧n : spanV ⊂ E},
where spanV denotes the span of the set V . We have shown in [21] that the correspondence

E 	→ �E (respectively E 	→ �E)

gives rise to a lattice isomorphism between the lattice of all subspaces of the vector space
Mm×n and the lattice of all faces of the convex cones Pm∧n (respectively Pm∧n). A linear map
in the cone

D := conv(Pm∧n, Pm∧n)

is said to be decomposable, where conv(C1, C2) denotes the convex hull of C1 and C2. Every
decomposable map is positive, that is, sends positive semi-definite matrices into themselves,
but the converse is not true. There are many examples of indecomposable positive linear maps
in the literature [4, 6, 10–12, 19, 20, 26, 28, 30–33]. We have shown in [23] that every face of
the cone D is of the form

σ(D,E) := conv(�D,�E)

for a pair (D,E) of subspaces of Mm×n. This pair of subspaces is uniquely determined under
the assumption

σ(D,E) ∩ Pm∧n = �D, σ(D,E) ∩ Pm∧n = �E. (1)

We say that a pair (D,E) is a decomposition pair if the set conv(�D,�E) is a face of D with
the condition (1). Faces of the cone D and decomposition pairs correspond to each other in
this way. Whenever we use the notation σ(D,E), we assume that (D,E) is a decomposition
pair. It is very hard to determine all decomposition pairs; see [3, 22] for the simplest case of
m = n = 2.

Now, we turn our attention to the block matrices, and identify an m × n matrix z ∈ Mm×n

and a vector z̃ ∈ Cn ⊗ Cm as follows. For z = [zik] ∈ Mm×n, define

zi =
n∑

k=1

zikek ∈ Cn, i = 1, 2, . . . , m,

z̃ =
m∑

i=1

zi ⊗ ei ∈ Cn ⊗ Cm.

Then z 	→ z̃ defines an inner product isomorphism from Mm×n onto Cn ⊗ Cm. We also note
that z̃ z̃∗ is a positive semi-definite matrix in Mn ⊗ Mm of rank 1. We consider the convex
cones

Vs = conv{̃z z̃ ∗ : rank z � s}, Vs = conv{(̃z z̃ ∗)τ : rank z � s}.
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for s = 1, 2, . . . , m ∧ n. By the relation

x̃y∗x̃y∗∗ = (y ⊗ x)(y ⊗ x)∗ = yy∗ ⊗ xx∗, x ∈ Cm, y ∈ Cn,

we have

V1 = M+
n ⊗ M+

m.

Therefore, a density matrix in Mn ⊗ Mm is separable if and only if it belongs to the cone V1.
If z = xy∗ is a rank 1 matrix with column vectors x ∈ Cm, y ∈ Cn then (zz∗)τ = ww∗ is
positive semi-definite with w = xy∗ by a direct simple calculation. Therefore, we see [7, 27]
that every separable state belongs to the convex cone

T := Vm∧n ∩ Vm∧n = {A ∈ (Mn ⊗ Mm)+ : Aτ ∈ (Mn ⊗ Mm)+}.
A block matrix in the cone T is said to be of positive partial transpose.

It is well known that every face of Vm∧n = (Mn ⊗ Mm)+ and Vm∧n is of the form

�D = {A ∈ (Mn ⊗ Mm)+ : RA ⊂ D̃},
�E = {A ∈ Mn ⊗ Mm : Aτ ∈ �E},

respectively, where RA is the range space of A and D̃ = {̃z ∈ Cn ⊗ Cm : z ∈ D}. It is also
easy to see that every face of T is of the form

τ(D,E) := �D ∩ �E

for a pair (D,E) of subspaces of Mm×n, as was explained in [13]. This pair is uniquely
determined under the assumption

int τ(D,E) ⊂ int �D, int τ(D,E) ⊂ int �E, (2)

where int C denote the relative interior of the convex set C with respect to the hyperplane
generated by C. We say that a pair (D,E) of subspaces is an intersection pair if it satisfies
the assumption (2), and τ(D,E) �= ∅. We also assume condition (2) whenever we use the
notation τ(D,E).

Note that the convex cones D and T are sitting in the vector space L(Mm,Mn) of all linear
maps from Mm into Mn and the vector space Mn ⊗ Mm of all block matrices. In [9], we have
considered the bi-linear pairing between the spaces L(Mm,Mn) and Mn ⊗ Mm, given by

〈A,φ〉 = Tr

 m∑
i,j=1

φ(eij ) ⊗ eij

 At

 =
m∑

i,j=1

〈φ(eij ), aij 〉, (3)

for A = ∑m
i,j=1 aij ⊗ eij ∈ Mn ⊗ Mm and φ ∈ L(Mm,Mn), where the bi-linear form on the

right-hand side is given by 〈X, Y 〉 = Tr(YXt) for X, Y ∈ Mn. The main result of [9] tells us
that two cones D and T are dual to each other in the following sense:

φ ∈ D ⇐⇒ 〈A,φ〉 � 0 for every A ∈ T,

A ∈ T ⇐⇒ 〈A,φ〉 � 0 for every φ ∈ D.

It was also shown in [9] that the cone Ps (respectively Ps) consisting of s-positive (respectively
s-copositive) linear maps is dual to the cone Vs (respectively Vs) in the above sense; see also
[29]. Some faces of the cone D arise from this duality which is of the form

τ(D,E)′ := {φ ∈ D : 〈A,φ〉 = 0 for every A ∈ τ(D,E)}
for a face τ(D,E) of T. If A is an interior point of τ(D,E) then we have

τ(D,E)′ = A′ := {φ ∈ D : 〈A,φ〉 = 0}.
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It is easy to see that

τ(D,E)′ = σ(D⊥, E⊥).

It should be noted that not every face arises in this way even in the simplest case of m = n = 2;
see [3, 22]. Nevertheless, every face of the cone T arises from this duality. More precisely, it
was shown in [13] that every face of the cone T is of the form

σ(D,E)′ := {A ∈ T : 〈A,φ〉 = 0 for every φ ∈ σ(D,E)} = τ(D⊥, E⊥)

for a face σ(D,E) of the cone D. The following is implicit in [13]. We state here for the
clearance

Proposition 2.1. A pair (D,E) of subspaces of Mm×n is an intersection pair if and only if
there exists A ∈ T such that RA = D̃ and RAτ = Ẽ. If this is the case then we have

int τ(D,E) = {A ∈ T : RA = D̃,RAτ = Ẽ}.

Proof. Let (D,E) be an intersection pair and take A ∈ intτ(D,E). Then A′ = τ(D,E)′ =
σ(D⊥, E⊥), and we have RA = D̃ and RAτ = Ẽ by [13] lemma 1. For the converse, assume
that there is A ∈ T such that RA = D̃ and RAτ = Ẽ. Take the intersection pair (D1, E1)

such that A ∈ intτ(D1, E1) Then we have RA = D̃1 and RAτ = Ẽ1, and so D = D1 and
E = E1. The last statement has been already proved. �

Corollary 2.2. If (D1, E1) and (D2, E2) are intersection pairs then (D1 ∨ D2, E1 ∨ E2) is
also an intersection pair.

Proof. Take Ai ∈ T with RAi = D̃i and RAτ
i = Ẽi for i = 1, 2. Then we have

A1 + A2 ∈ T, R(A1 + A2) = ˜D1 ∨ D2, R(A1 + A2)
τ = Ẽ1 ∨ E2.

Therefore, we see that (D1 ∨ D2, E1 ∨ E2) is an intersection pair. �

Now, we have two cones D ⊂ P1 in the space L(Mm,Mn) and other two cones V1 ⊂ T

in the space Mn ⊗ Mm. Recall that P1 denotes the cone of all positive linear maps. The pairs
(D, T) and (P1, V1) are dual to each other, as was explained before. Let σ(D,E) be a proper
face of the cone D. Then we have the following two cases,

int σ(D,E) ⊂ int P1 or σ(D,E) ⊂ ∂P1,

since σ(D,E) is a convex subset of the cone P1, where ∂C := C\int C denotes the boundary
of the convex set C. We have shown in [13], [14] that

int σ(D,E) ⊂ int P1 ⇐⇒ σ(D,E)′ ∩ V1 = {0}. (4)

Every element A ∈ T determines a unique face τ(D,E) whose interior contains A. Then a
density block matrix A ∈ T is an (entangled) edge state if and only if τ(D,E) ∩ V1 = {0}.
Therefore, we conclude the following:

(i) If σ(D,E) is a face of D with int σ(D,E) ⊂ int P1 then every nonzero element in the
dual face σ(D,E)′ gives rise to an entangled edge state up to constant multiplications.

(ii) Every edge state arises in this way.
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The second claim follows from the fact that every face of the cone T arises from the duality,
as was explained before.

3. Construction of 3 ⊗ 3 PPT entangled edge states

We begin with the decomposable positive linear map φ : M3 → M3 defined by

φ = φe11−e22 + φe22−e33 + φe33−e11 + φµe12−λe21 + φµe23−λe32 + φµe31−λe13 ,

which lies in ∂D ∩ int P1 as was shown in [14], where

λµ = 1, λ > 0, λ �= 1.

We try to determine the dual face τ(D,E) = {φ}′. This map was originated from
indecomposable positive linear maps considered in [4]. We note that D is the seven-
dimensional space given by

D = span {e12, e21, e23, e32, e31, e13, e11 + e22 + e33},
and E is the six-dimensional space given by

E = span {λe12 + µe21, λe23 + µe32, λe31 + µe13, e11, e22, e33}.
Therefore, every matrix xi ∈ E is of the form

xi = ρ ◦ σi

where

ρ =
1 λ µ

µ 1 λ

λ µ 1

 , σi =
ξi αi γi

αi ηi βi

γi βi ζi

 ,

and ρ ◦ σi denotes the Hadamard product of ρ and σi .
It follows that if Xτ = ∑

i x̃i x̃
∗
i ∈ V3 ∩ V3 belongs to τ(D,E) then

Xτ =
∑

(ρ̃ρ̃∗) ◦ (σ̃ i σ̃
∗
i ) = (ρ̃ρ̃∗) ◦ Y

with

ρ̃ρ̃∗ =



1 λ µ µ 1 λ λ µ 1
λ λ2 1 1 λ λ2 λ2 1 λ

µ 1 µ2 µ2 µ 1 1 µ2 µ

µ 1 µ2 µ2 µ 1 1 µ2 µ

1 λ µ µ 1 λ λ µ 1
λ λ2 1 1 λ λ2 λ2 1 λ

λ λ2 1 1 λ λ2 λ2 1 λ

µ 1 µ2 µ2 µ 1 1 µ2 µ

1 λ µ µ 1 λ λ µ 1



,
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and Y = ∑
σ̃ i σ̃

∗
i is given by

(ξ |ξ) (ξ |α) (ξ |γ ) (ξ |α) (ξ |η) (ξ |β) (ξ |γ ) (ξ |β) (ξ |ζ )

(α|ξ) (α|α) (α|γ ) (α|α) (α|η) (α|β) (α|γ ) (α|β) (α|ζ )

(γ |ξ) (γ |α) (γ |γ ) (γ |α) (γ |η) (γ |β) (γ |γ ) (γ |β) (γ |ζ )

(α|ξ) (α|α) (α|γ ) (α|α) (α|η) (α|β) (α|γ ) (α|β) (α|ζ )

(η|ξ) (η|α) (η|γ ) (η|α) (η|η) (η|β) (η|γ ) (η|β) (η|ζ )

(β|ξ) (β|α) (β|γ ) (β|α) (β|η) (β|β) (β|γ ) (β|β) (β|ζ )

(γ |ξ) (γ |α) (γ |γ ) (γ |α) (γ |η) (γ |β) (γ |γ ) (γ |β) (γ |ζ )

(β|ξ) (β|α) (β|γ ) (β|α) (β|η) (β|β) (β|γ ) (β|β) (β|ζ )

(ζ |ξ) (ζ |α) (ζ |γ ) (ζ |α) (ζ |η) (ζ |β) (ζ |γ ) (ζ |β) (ζ |ζ )


if we denote by ξ, η, ζ, α, β and γ the vectors whose entries are ξi, ηi, ζi, αi, βi and γi ,
respectively. So, X = (Xτ )τ is of the form

(ξ |ξ) λ(ξ |α) µ(ξ |γ ) µ(α|ξ) (α|α) µ2(α|γ ) λ(γ |ξ) λ2(γ |α) (γ |γ )

λ(α|ξ) λ2(α|α) (α|γ ) (η|ξ) λ(η|α) µ(η|γ ) µ(β|ξ) (β|α) µ2(β|γ )

µ(γ |ξ) (γ |α) µ2(γ |γ ) λ(β|ξ) λ2(β|α) (β|γ ) (ζ |ξ) λ(ζ |α) µ(ζ |γ )

µ(ξ |α) (ξ |η) λ(ξ |β) µ2(α|α) µ(α|η) (α|β) (γ |α) λ(γ |η) λ2(γ |β)

(α|α) λ(α|η) λ2(α|β) µ(η|α) (η|η) λ(η|β) µ2(β|α) µ(β|η) (β|β)

µ2(γ |α) µ(γ |η) (γ |β) (β|α) λ(β|η) λ2(β|β) µ(ζ |α) (ζ |η) λ(ζ |β)

λ(ξ |γ ) µ(ξ |β) (ξ |ζ ) (α|γ ) µ2(α|β) µ(α|ζ ) λ2(γ |γ ) (γ |β) λ(γ |ζ )

λ2(α|γ ) (α|β) λ(α|ζ ) λ(η|γ ) µ(η|β) (η|ζ ) (β|γ ) µ2(β|β) µ(β|ζ )

(γ |γ ) µ2(γ |β) µ(γ |ζ ) λ2(β|γ ) (β|β) λ(β|ζ ) λ(ζ |γ ) µ(ζ |β) (ζ |ζ )


Now, we consider the condition X ∈ (�D⊥)′ to see that

〈Y, ρ̃ρ̃∗ ◦ φV 〉 = 〈ρ̃ρ̃∗ ◦ Y, φV 〉 = 〈Xτ , φV 〉 = 〈X,φV 〉 = 0

for any V ∈ D⊥. Note that any matrix V in D⊥ is of the form

V =
a1 · ·

· a2 ·
· · a3

 , a1 + a2 + a3 = 0,

and

ρ̃ρ̃∗ ◦ φV =



|a1|2 · · · · · · · ·
· · · a2a1 · · · · ·
· · · · · · a3a1 · ·

· a1a2 · · · · · · ·
· · · · |a2|2 · · ·
· · · · · · · a3a2 ·

· · a1a3 · · · · · ·
· · · · · a2a3 · · ·
· · · · · · · · |a3|2



.
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Therefore, it follows that

 (ξ |ξ) (α|α) (γ |γ )

(α|α) (η|η) (β|β)

(γ |γ ) (β|β) (ζ |ζ )

 ◦

|a1|2 a2a1 a3a1

a1a2 |a2|2 a3a2

a1a3 a2a3 |a3|2

 = 0

whenever a1 + a2 + a3 = 0, where A ◦ B = ∑
aij bij by an abuse of notation. Taking

(a1, a2, a3) = (1,−1, 0), we have ‖ξ‖2 + ‖η‖2 = 2‖α‖2. But the positivity of the 2 × 2
submatrix of X with the 1, 5 columns and rows tells us that ‖ξ‖ = ‖η‖ = ‖α‖. Similarly, we
have

‖ξ‖ = ‖η‖ = ‖ζ‖ = ‖α‖ = ‖β‖ = ‖γ ‖ = 1

by assuming that ‖ξ‖ = 1. Hence, X is of the form



1 λ(ξ |α) µ(ξ |γ ) µ(α|ξ) 1 µ2(α|γ ) λ(γ |ξ) λ2(γ |α) 1

λ(α|ξ) λ2 (α|γ ) (η|ξ) λ(η|α) µ(η|γ ) µ(β|ξ) (β|α) µ2(β|γ )

µ(γ |ξ) (γ |α) µ2 λ(β|ξ) λ2(β|α) (β|γ ) (ζ |ξ) λ(ζ |α) µ(ζ |γ )

µ(ξ |α) (ξ |η) λ(ξ |β) µ2 µ(α|η) (α|β) (γ |α) λ(γ |η) λ2(γ |β)

1 λ(α|η) λ2(α|β) µ(η|α) 1 λ(η|β) µ2(β|α) µ(β|η) 1

µ2(γ |α) µ(γ |η) (γ |β) (β|α) λ(β|η) λ2 µ(ζ |α) (ζ |η) λ(ζ |β)

λ(ξ |γ ) µ(ξ |β) (ξ |ζ ) (α|γ ) µ2(α|β) µ(α|ζ ) λ2 (γ |β) λ(γ |ζ )

λ2(α|γ ) (α|β) λ(α|ζ ) λ(η|γ ) µ(η|β) (η|ζ ) (β|γ ) µ2 µ(β|ζ )

1 µ2(γ |β) µ(γ |ζ ) λ2(β|γ ) 1 λ(β|ζ ) λ(ζ |γ ) µ(ζ |β) 1



.

If we take vectors so that span {ξ, η, ζ } ⊥ span {α, β, γ } with mutually orthonormal vectors
α, β, γ then we have

X =



1 · · · 1 · · · 1
· λ2 · (η|ξ) · · · · ·
· · µ2 · · · (ζ |ξ) · ·

· (ξ |η) · µ2 · · · · ·
1 · · · 1 · · · 1
· · · · · λ2 · (ζ |η) ·

· · (ξ |ζ ) · · · λ2 · ·
· · · · · (η|ζ ) · µ2 ·
1 · · · 1 · · · 1



(5)
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and

Xτ =



1 · · · (ξ |η) · · · (ξ |ζ )

· λ2 · 1 · · · · ·
· · µ2 · · · 1 · ·

· 1 · µ2 · · · · ·
(η|ξ) · · · 1 · · · (η|ζ )

· · · · · λ2 · 1 ·

· · 1 · · · λ2 · ·
· · · · · 1 · µ2 ·

(ζ |ξ) · · · (ζ |η) · · · 1



.

We note that the rank of X is equal to

1 + rank

(
(ξ |ξ) (ξ |η)

(η|ξ) (η|η)

)
+ rank

(
(η|η) (η|ζ )

(ζ |η) (ζ |ζ )

)
+ rank

(
(ζ |ζ ) (ζ |ξ)

(ξ |ζ ) (ξ |ξ)

)
and the rank of Xτ is equal to

3 + rank

(ξ |ξ) (ξ |η) (ξ |ζ )

(η|ξ) (η|η) (η|ζ )

(ζ |ξ) (ζ |η) (ζ |ζ )

 .

Recall that the rank of the n × n matrix [(ξi |ξj )]ni,j=1 is the dimension of the space
span {ξ1, . . . , ξn}. If we take mutually independent vectors ξ, η, ζ then we get a (7, 6) edge
state. If we take vectors so that dim span {ξ, η, ζ } = 2 and neither of the two vectors is linearly
dependent then we may get a (7, 5) edge state. If we take vectors so that dim span {ξ, η, ζ } = 2
and one pair of two vectors are linearly dependent then we have a (6, 5) edge state. Finally,
if we take vectors with ξ = η = ζ then we have a (4, 4) edge state as was given in the paper
[14]. For more explicit examples, we put

ξ = e1, η = e2

in C3. We get 1-parameter family of (7, 6) edge states (respectively (7, 5) and (6, 5) edge
states) if we put

ζ = e3 (respectively ζ = 1√
2
(e1 + e2) and ζ = e1)

in the matrix (5).
In order to get other edge states such as (8, 5), we discard the condition X ∈ (�D⊥)′. We

define vectors ξ, η, ζ ∈ C5 by

ξ = √
te1, η = √

te2, ζ =
√

1

t (t + 1)
(ξ + η)
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for t > 1. We also take mutually orthonormal vectors α, β, γ ∈ C5 in (5) so that

span {ξ, η, ζ } ⊥ span {α, β, γ }.
Then we have

X =



t · · · 1 · · · 1
· λ2 · · · · · · ·
· · µ2 · · ·

√
t

t+1 · ·

· · · µ2 · · · · ·
1 · · · t · · · 1

· · · · · λ2 ·
√

t
t+1 ·

· ·
√

t
t+1 · · · λ2 · ·

· · · · ·
√

t
t+1 · µ2 ·

1 · · · 1 · · · 2
t+1


and

Xτ =



t · · · · · · ·
√

t
t+1

· λ2 · 1 · · · · ·
· · µ2 · · · 1 · ·

· 1 · µ2 · · · · ·
· · · · t · · ·

√
t

t+1

· · · · · λ2 · 1 ·

· · 1 · · · λ2 · ·
· · · · · 1 · µ2 ·√
t

t+1 · · ·
√

t
t+1 · · · 2

t+1



.

First of all, two matricest 1 1
1 t 1
1 1 2

t+1


 λ2

√
t

t+1√
t

t+1 µ2

 , t > 1

are positive semi-definite with rank 2. It follows that X belongs to T. We note that RX is an
eight-dimensional space spanned by

te11 + e22 + e33, e11 + te22 + e33, e12, e21, e23, e32, e31, e13 (6)

and RXτ is a five-dimensional space spanned by

te11 +

√
t

t + 1
e33, te22 +

√
t

t + 1
e33, λe12 + µe21, λe23 + µe32, λe31 + µe13.

Now, we proceed to show that X is an edge state. It is easy to see that RXτ has the
following six rank 1 matrices,
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1
4 · µ

· · ·
λ · (t2 + t)−

1
4


· · ·

· (t2 + t)
1
4 λ

· µ (t2 + t)−
1
4


 i λ ·

µ −i ·
· · ·


−(t2 + t)

1
4 · µ

· · ·
λ · −(t2 + t)−

1
4


· · ·

· −(t2 + t)
1
4 λ

· µ −(t2 + t)−
1
4


−i λ ·

µ i ·
· · ·

 ,

up to scalar multiplication. We note that four matrices in the above list have real entries. If
a rank 1 matrix xy∗ ∈ RXτ is one of them then xy∗ = xy∗. If xy∗ ∈ RXτ is one of the
following matrices,

ie11 − ie22 + λe12 + µe21, −ie11 + ie22 + λe12 + µe21,

with complex entries, then xy∗ should be

ie11 + ie22 + λe12 − µe21, −ie11 − ie22 + λe12 − µe21,

respectively. In both cases, we can show that xy∗ does not belong to RX which is spanned
by matrices in 6. Consequently, there is no rank 1 matrix xy∗ ∈ RXτ with xy∗ ∈ RX. This
gives us a 2-parameter family of (8, 5) edge states.
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